Выбери примеры абиотических факторов окружающей среды ветер. Основные абиотические факторы среды

Выбери примеры абиотических факторов окружающей среды ветер. Основные абиотические факторы среды

Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На Слайде 3 приведена классификация абиотических факторов.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение . Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных ) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 С. Но большинство видов и большая часть их активности приурочены к еще более узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Температура, колеблющаяся от 10 до 20 С (в среднем составляющая 15 С), не обязательно действует на организм так же, как постоянная температура 15 С. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры. С помощью переменной температуры удалось ускорить развитие яиц кузнечика в среднем на 38,6 % по сравнению с их развитием при постоянной температуре. Пока не ясно, обусловлен ли ускоряющий эффект самими колебаниями температуры или усиленным ростом, вызываемым кратковременным повышением температуры и не компенсирующимся замедлением роста при ее понижении.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы в зависимости от потребности их в воде, а следовательно, и от различий местообитания, подразделяются на ряд экологических групп: водные или гидрофильные - постоянно живущие в воде; гигрофильные - живущие в очень влажных местообитаниях; мезофильные - отличающиеся умеренной потребностью в воде и ксерофильные - живущие в сухих местообитаниях.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. Роса может представлять собой значительный, а в местах с малым выпадением дождей и очень важный вклад в общее количество осадков.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности, близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Спектр распределения энергии излучения Солнца за пределами земной атмосферы (рис.6) показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % - в видимой и 10 % - в ультрафиолетовой и рентгеновской областях.

Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк (рис. 7) и его частотные диапазоны различным образом воздействуют на живое вещество. Земная атмосфера, включая озоновый слой, селективно, то есть избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 0,3 до 3 мкм. Более длинно и коротковолновое излучение поглощается атмосферой.

С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72 %).

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Известно, что животные и растения реагируют на изменение длины волны света. Цветовое зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.

Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.

Газовый состав атмосферы также является важным климатическим фактором (рис. 8). Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20 % . Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5 % современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, приведшие к изменению климата и, по-видимому, послужившие толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким содержанием кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

В настоящее время атмосфера Земли имеет следующий состав: кислород ~21 %, азот ~78 %, углекислый газ ~0,03 %, инертные газы и примеси ~0,97 % . Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1 % по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености - снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.

Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:

с образованием угольной кислоты, которая реагирует с известью, образуя карбонаты СО22- и гидрокарбонаты НСО3-. Эти соединения поддерживают концентрацию водородных ионов на уровне, близком к нейтральному значению. Небольшое количество углекислого газа в воде повышает интенсивность фотосинтеза и стимулирует процессы развития многих организмов. Высокая же концентрация углекислого газа является лимитирующим фактором для животных, так как она сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне 0 ? рН? 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % - на оксиды железа Fe2О3, от 0,1 до 5 % - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок - частиц диаметром 0,02-2 мм, ила - частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы . Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот - в ионы аммония NH4+, фосфор - в ортофосфатионы H2PO4-, сера - в сульфатионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух так же как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться в глубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15 % массы почвы, чем в песчанистых - примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.

Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса.

Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразовния.

Химические свойства почвы зависят от содержания минеральных веществ, которые находятся в ней в виде растворенных ионов. Некоторые ионы являются для растений ядом, другие - жизненно не-обходимы. Концентрация в почве ионов водорода (кислотность) рН>7, то есть в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют рН = 8...9, а торфяные - до 4. На этих почвах развивается специфическая растительность.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000.

В почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий. При отсутствии в почве специализированных групп бактерий их роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы и таким образом делают органические вещества доступными для микроорганизмов.

Органические вещества вырабатываются растениями при использовании минеральных солей, солнечной энергии и воды. Таким образом, почва теряет минеральные вещества, которые растения взяли из нее. В лесах часть питательных веществ вновь возвращается в почву через листопад. Культурные растения за какой-то период времени изымают из почвы значительно больше биогенных веществ, чем возвращают в нее. Обычно потери питательных веществ восполняются внесением минеральных удобрений, которые в основном прямо не мо-гут быть использованы растениями и должны быть трансформированы микроорганизмами в биологически доступную форму. При отсутствии таких микроорганизмов почва теряет плодородие.

Основные биохимические процессы протекают в верхнем слое почвы толщиной до 40 см, так как в нем обитает наибольшее количество микроорганизмов. Одни бактерии участвуют в цикле превращения только одного элемента, другие - в циклах превращения многих элементов. Если бактерии минерализуют органическое вещество - разлагают органическое вещество на неорганические соединения, то простейшие уничтожают избыточное количество бактерий. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют ее аэрации. Кроме того, они перерабатывают трудно расщепляемые органические вещества.

К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография) . Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Среди абиотических факторов особого внимания заслуживает огонь или пожар . В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные. Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.

Если низовые пожары случаются регулярно раз в несколько лет, на земле остается мало валежника, это снижает вероятность возгорания крон. В лесах, не горевших более 60 лет, накапливается столько горючей подстилки и отмершей древесины, что при ее воспламенении верховой пожар почти неизбежен.

Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию. Широколиственные же породы лишены защитных приспособлений от огня, он для них губителен.

Таким образом, пожары поддерживают устойчивость лишь некоторых экосистем. Листопадным и влажным тропическим лесам, равновесие которых складывалось без влияния огня, даже низовой пожар может причинить большой ущерб, разрушив богатый гумусом верхний горизонт почвы, приведя к эрозии и вымыванию из нее биогенных веществ.

Вопрос "жечь или не жечь" непривычен для нас. Последствия выжигания могут быть очень разными в зависимости от времени и интенсивности. По своей неосторожности человек нередко бывает причиной увеличения частоты диких пожаров, поэтому необходимо активно бороться за пожарную безопасность в лесах и зонах отдыха. Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе. Вместе с тем необходимо знать, что использование огня специально обученными людьми является частью правильного землепользования.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Популяции концентрируются на определенной территории и не могут быть распространены повсюду с одинаковой плотностью, поскольку имеют ограниченный диапазон толерантности по отношению к факторам окружающей среды. Следовательно, для каждого сочетания абиотических факторов характерны свои виды живых организмов. Множество вариантов сочетаний абиотических факторов и приспособленных к ним видов живых организмов обуславливают разнообразие экосистем на планете.

  • Наземно – воздушная среда жизни и ее особенности. Адаптации организмов к обитанию в наземно-воздушной среде
  • Водная среда жизни. Адаптации организмов к водной среде
  • Абиотические факторы - это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

    Свет (cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности

    организмов.

    Температура - один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать]. Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

    Влажность - экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

    В абиотической части среды обитания (в неживой природе) все факторы, прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной).

    К основным климатическим факторам относят энергию Солнца, температуру, осадки и влажность, подвижность среды, давление, ионизирующие излучения.

    Экологи́ческие фа́кторы - свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

    Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

    Классификации экологических факторов

    По характеру воздействия

    Прямо действующие - непосредственно влияющие на организм, главным образом на обмен веществ

    Косвенно действующие - влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

    По происхождению

    Абиотические - факторы неживой природы:

    климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

    эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы химический состав почвы

    орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

    химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

    физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

    Биотические - связанные с деятельностью живых организмов:

    фитогенные - влияние растений

    микогенные - влияние грибов

    зоогенные - влияние животных

    микробиогенные - влияние микроорганизмов

    Антропогенные (антропические):

    физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

    химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

    биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

    социальные - связанные с отношениями людей и жизнью в обществе

    По расходованию

    Ресурсы - элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

    Условия - не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

    По направленности

    Векторизованные - направленно изменяющиеся факторы: заболачивание, засоление почвы

    Многолетние-циклические - с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

    Осцилляторные (импульсные, флуктуационные) - колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

    Правило Оптимума

    В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (опти­мального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно. К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов. Организмы с узким диапазоном адаптации к факторам называются стенобионтами.

    Диапазон значений факторов (между критическими точками) называют экологической валентностью. Синонимом термина валентность является толерантность, или пластичность (изменчивость). Эти характеристики зависят в значительной мере от среды, в которой обитают организмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стено-бионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты. Зона оптимума и экологическая валентность обычно шире у теплокровных организмов, чем у холоднокровных. Надо также иметь в виду, что экологическая валентность для одного и того же вида не остается одинаковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Молодые и старческие организмы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весьма неоднозначны. Например, по отношению к температуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным).


    Похожая информация.


    На экзаменах ОГЭ и ЕГЭ обязательно просят назвать факторы, влияющие на окружающий нас мир. Чаще всего речь идёт именно об абиотических факторах, с которыми человек сталкивается буквально на каждом шагу, даже не подозревая об этом.

    Что это за факторы и как они влияют на живых существ, рассмотрим в этой статье.

    Что такое абиотические факторы

    Это комплекс, состоящий из элементов неживой природы. Эти элементы активно влияют на живые организмы и состояние окружающей среды.

    Классификация:

    1. Орографические (высота над уровнем моря, рельеф).
    2. Почвенные (механический состав почвы, её плотность).
    3. Химические (химический состав воздуха и водной среды, почвы).
    4. Климатические (свет, температура, давление и влажность, скорость ветра).
    5. Физические (радиоактивность, магнитные поля).

    Примеры влияния абиотических факторов

    Что же оказывает влияние на жизнь и здоровье человека, животных и растений?

    Свет

    Является главным источником энергии. Его роль трудно переоценить: именно свет участвует в фотосинтезе и испарении воды, зрительном восприятии мира животными и человеком, образовании витамина Д, необходимого для роста и укрепления зубов и костей.

    В тех дозах, в которых до нас доходит солнечный свет, он не способен нанести большой вред живому организму. Реальное влияние света человек может заметить по загару на коже. Но во избежание ожогов в летнее время следует соблюдать режим пребывания на солнце.

    Температура

    Напрямую влияет на жизнь животных и растений. В холодное время года растения почти перестают испарять воду через устьица, скорость и интенсивность роста и питания уменьшается.

    Некоторые животные, например, медведи, впадают в спячку, а заяц-беляк наоборот всю зиму бодрствует, лишь немного меняя окрас своей шерстки. Также, низкие температуры сопровождаются упадком кормовой базы, что приводит к миграции птиц.

    Фотопериодизм

    Примером фотопериодизма (а как мы знаем, это реакция живого организма на продолжительность дня) может стать растение, переходящее от вегетативного роста к зацветанию.

    Так же изменение продолжительности дня и ночи является сигналом к изменениям в природе: наступления зимы или лета.

    Влажность

    Влажность воздуха напрямую влияет на самочувствие человека. Нежелательна слишком высокая или слишком низкая влажность. Оптимально – 40-60%.

    При низкой влажности воздуха у людей наблюдается общий упадок самочувствия, сонливость и утомляемость. Высокая влажность же может вызвать перегревание или же переохлаждение, в зависимости от сезона.

    Атмосфера

    Атмосферное давление проявляется в первую очередь резкими изменениями погоды.

    Для человека такие перепады более чем некомфортны: организм не успевает перестаиваться под атмосферу, из-за чего начинает сильно болеть голова, возникают проблемы с сосудами и сердцем.

    Почвенные или эдафические факторы

    От состава почвы, её плодородности, зависит произрастание растения.

    Если почва недостаточно удовлетворяет потребность растений в воде и питательных веществах, скорее всего, растение погибнет.

    Рельеф местности или орографические факторы

    В основном, рельеф влияет на мощность осадков, и соответственно, на влажность.

    Другие

    По своим характеристикам и особенностям, абиотические факторы делят по воздействию на организмы, по расходованию и направленности.

    По воздействию на организмы бывают:

    • прямо действующие - оказывают непосредственное влияние на организмы, в частности, на метаболизм;
    • косвенно действующие - влияют на организмы через такие факторы, как рельеф, высоту над уровнем моря и др.

    По расходованию:

    • ресурсы - расходуемые запасы среды (свет, вода, углекислый газ, кислород);
    • условия - «вечные» элементы среды (кислотность почвы, температура и движение воздуха).

    По направленности:

    • векторизованные - способны к направленному изменению (засоление почв, заболачивание);
    • многолетние-циклические - периодично чередующиеся изменения среды (изменение климата с течением времени);
    • осцилляторные (импульсные, флуктуационные) - факторы, колеблющиеся в определённых числовых пределах (колебания температуры в течение дня).

    Влияние абиотических факторов на живые организмы и здоровье человека

    Особенность экологических факторов заключается в том, что они не несут смерть всему живому. В ходе эволюции, организмы научились выживать в постоянно изменяющимся окружающим мире.

    Это приспособление к новым условиям жизни может сопровождаться симбиозом (взаимоотношения, при которых живые существа помогают друг другу).

    Абиотические условия, определяющие поле существования жизни

    Перечислить и дать характеристику условиям, благодаря которым возможна жизнь на Земле, не так уж и сложно.

    К важнейшим условиям, необходимым для любого живого организма, относят:

    • кислород и углекислый газ;
    • вода;
    • комфортная температура;
    • минеральные вещества.

    Все перечисленные условия крайне необходимы для животных, растений и других организмов.

    Воздействие факторов среды на живые организмы в отдельности и сообщества в целом многогранно. При оценке влияния того или иного фактора среды важным оказывается характеристика интенсивности его действия на живую материю: в благоприятных условиях говорят об оптимальном, а при избытке или недостатке - ограничивающем факторе.

    Температура. Большинство видов приспособлено к довольно узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, способны существовать при очень низких температурах. Например, споры микроорганизмов выдерживают охлаждение до -200 °С. Отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре от +80 до -88 °С. Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы устойчивости к колебаниям температуры у водных организмов уже, чем у наземных. Однако и для водных и для наземных обитателей оптимальной является температура в пределах от +15 до +30 °С.

    Различают организмы с непостоянной температурой тела - пой- килотермные (от греч. poikilos - различный, переменчивый и therme - тепло) и организмы с постоянной температурой тела - гомойотерм- ные (от греч. homoios - подобный и therme - тепло). Температура тела пойкилотермных организмов зависит от температуры окружающей среды. Ее повышение вызывает у них интенсификацию жизненных процессов и, в известных пределах, ускорение развития.

    В природе температура непостоянна. Организмы, которые обычно подвергаются воздействию сезонных колебаний температур, что наблюдается в умеренных зонах, хуже переносят постоянную температуру. Резкие колебания температуры - сильные морозы или зной - также неблагоприятны для организмов. Существует много приспособлений для борьбы с охлаждением или перегревом. С наступлением зимы растения и пойкилотермные животные впадают в состояние зимнего покоя. Интенсивность обмена веществ резко снижается, в тканях запасается много жиров и углеводов. Количество воды в клетках уменьшается, накапливаются сахара и глицерин, препятствующие замерзанию. В жаркое время года включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение воды через устьица, что приводит к снижению температуры листьев. У животных в этих условиях также усиливается испарение воды через дыхательную систему и кожные покровы. Кроме того, пойкилотермные животные избегают перегрева путем приспособительного поведения: выбирают места обитания с наиболее благоприятным микроклиматом, в жаркое время дня скрываются в норах или под камнями, проявляют активность в определенное время суток и т.п.

    Таким образом, температура окружающей среды представляет собой важный и зачастую ограничивающий жизненные проявления фактор.

    Гораздо меньше зависят от температурных условий среды животные гомойотермные - птицы и млекопитающие. Ароморфные изменения строения позволили этим двум классам сохранять активность при очень резких перепадах температур и освоить практически все места обитания.

    Угнетающее действие низких температур на организмы усиливается сильными ветрами.

    Свет. Свет в форме солнечной радиации обеспечивает все жизненные процессы на Земле (рис. 25.4). Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина дня, или фотопериод). Ультрафиолетовые лучи с длиной волны более 0,3 мкм составляют примерно 40% лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Насекомые зрительно различают ультрафиолетовые лучи и пользуются этим для ориентации на местности в облачную погоду. Наибольшее влияние на организм оказывает видимый свет с длиной волны 0,4-0,75 мкм. Энергия видимого света составляет около 45% общего количества лучистой энергии, падающей на Землю. Видимый свет менее всего ослабляется при прохождении через плотные облака и воду. Поэтому фотосинтез может идти и при пасмурной погоде, и под слоем воды определенной толщины. Но все же на синтез биомассы расходуется лишь от 0,1 до 1% приходящей солнечной энергии.

    Рис. 25.4.

    В зависимости от условий обитания растения адаптируются к тени - теневыносливые растения или, напротив, к яркому солнцу - светолюбивые растения. К последней группе относятся хлебные злаки.

    Чрезвычайно важную роль в регуляции активности живых организмов и их развития играет продолжительность воздействия света - фотопериод. В умеренных зонах, выше и ниже экватора, цикл развития растений и животных приурочен к сезонам года и подготовка к изменению температурных условий осуществляется на основе сигнала длины дня, которая, в отличие от других сезонных факторов, в определенное время года в данном месте всегда одинакова. Фотопериод представляет собой как бы пусковой механизм, последовательно включающий физиологические процессы, приводящие к росту, цветению растений весной, плодоношению летом и сбрасыванию ими листьев осенью, а также к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.

    Кроме сезонных изменений смена дня и ночи определяет суточный ритм активности как целых организмов, так и физиологических процессов. Способность организмов ощущать время, наличие у них «биологических часов» - важное приспособление, обеспечивающее выживание особи в данных условиях среды.

    Инфракрасное излучение составляет 45% общего количества лучистой энергии, падающей на Землю. Инфракрасные лучи повышают температуру тканей растений и животных, хорошо поглощаются объектами неживой природы, в том числе водой.

    Для продуктивности растений, т.е. образования органического вещества, наиболее важен такой показатель, как суммарное прямое солнечное излучение, получаемое за длительные промежутки времени (месяцы, год).

    Влажность. Вода - необходимый компонент клетки, поэтому количество ее в тех или иных местах обитания служит ограничивающим фактором для растений и животных и определяет характер флоры и фауны в данной местности. Избыток воды в почве приводит к развитию болотной растительности. В зависимости от влажности почвы (и годового количества осадков) видовой состав растительных сообществ меняется. При годовом количестве осадков 250 мм и менее развивается пустынный ландшафт. Неравномерное распределение осадков по временам года также представляет важный ограничивающий фактор для организмов. В этом случае растениям и животным приходится переносить длительные засухи. В короткий же период высокой влажности почвы происходит накопление первичной продукции для сообщества в целом. Им определяется размер годового запаса пищи для животных и сапрофагов (от греч. sapros - гнилой и phagos - пожиратель) - организмов, разлагающих органические остатки.

    В природе, как правило, существуют суточные колебания влажности воздуха, которые наряду со светом и температурой регулируют активность организмов. Влажность как экологический фактор важна тем, что изменяет эффект температуры. Температура оказывает более выраженное влияние на организм, если влажность очень высока или низка. Точно так же роль влажности повышается, если температура близка к пределам выносливости данного вида. Виды растений и животных, обитающие в зонах с недостаточной степенью увлажнения, в процессе естественного отбора эффективно приспособились к неблагоприятным условиям засушливости. У таких растений мощно развита корневая система, повышено осмотическое давление клеточного сока, способствующее удержанию воды в тканях, утолщена кутикула листа, сильно уменьшена или превращена в колючки листовая пластинка. У некоторых растений (саксаула) листья утрачиваются, а фотосинтез осуществляется зелеными стеблями. При отсутствии воды рост пустынных растений прекращается, в то время как влаголюбивые растения в таких условиях увядают и гибнут. Кактусы способны запасать большое количество воды в тканях и экономно ее расходовать. Аналогичное приспособление обнаружено у африканских пустынных молочаев, что служит примером параллельной эволюции неродственных групп в сходных условиях среды.

    У пустынных животных также есть целый ряд физиологических адаптаций, позволяющих переносить недостаток воды. Мелкие животные - грызуны, пресмыкающиеся, членистоногие - извлекают воду из пищи. Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (горб у верблюда). В жаркое время года многие животные (грызуны, черепахи) впадают в спячку, продолжающуюся несколько месяцев.

    Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содержащиеся в горных породах; кроме того, оно поступает из космоса.

    Интенсивность ионизирующего излучения в окружающей среде значительно повысилась в результате использования человеком атомной энергии. Испытания атомного оружия, атомные электростанции, получение топлива для них и захоронение отходов, медицинские исследования и другие виды мирного использования атомной энергии создают локальные «горячие пятна» и образуют отходы, нередко попадающие в окружающую среду в процессе транспортировки или хранения.

    Из трех видов ионизирующего излучения, имеющих важное экологическое значение, два представляют собой корпускулярное излучение (альфа- и бета-частицы), а третье - электромагнитное (гамма-излучение и близкое ему рентгеновское излучение).

    Корпускулярное излучение состоит из потока атомных или субатомных частиц, которые передают свою энергию всему, с чем они сталкиваются. Альфа-излучение - это ядра гелия, они имеют огромные по сравнению с другими частицами, размеры. Длина их пробега в воздухе составляет всего несколько сантиметров. Бета-излучение - это быстрые электроны. Их размеры гораздо меньше, длина пробега в воздухе равна нескольким метрам, а в тканях животного или растительного организма - нескольким сантиметрам. Что касается ионизирующего электромагнитного излучения, то оно сходно со световым, только длина волны у него гораздо короче. Оно проходит в воздухе большие расстояния и легко проникает в вещество, высвобождая свою энергию на протяжении длинного следа. Гамма-излучение, например, легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути. Биологи нередко называют радиационные вещества, испускающие альфа- и бета-излучение, «внутренними излучателями», так как они обладают наибольшим эффектом, будучи поглощенными, заглоченными или оказавшись каким-то иным способом внутри организма. Радиоактивные вещества, испускающие преимущественно гамма-излучение, относят к «внешним излучателям», так как это проникающее излучение может оказывать действие, когда его источник находится вне организма.

    Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, содержащимися в воде и почве, образуют так называемое фоновое излучение, к которому адаптированы ныне существующие животные и растения. В разных частях биосферы естественный фон различается в 3-4 раза. Наименьшая его интенсивность наблюдается около поверхности моря, а наибольшая на больших высотах в горах, образованных гранитными породами. Интенсивность космического излучения возрастает с увеличением высоты местности над уровнем моря, а гранитные скалы содержат больше встречающихся в природе радионуклидов, чем осадочные породы.

    В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее губительное действие, причем человек отличается особой чувствительностью.

    Большие дозы, получаемые организмом за короткое время (минуты или часы), называют острыми дозами в противоположность хроническим дозам, которые организм мог бы выдержать на протяжении всего своего жизненного цикла. Воздействие низких хронических доз измерить сложнее, так как они могут вызывать отдаленные генетические и соматические последствия. Любое повышение уровня излучения в среде над фоновым или даже высокий естественный фон может повысить частоту вредных мутаций.

    У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра. У высших животных не обнаружено такой простой или прямой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани - костного мозга. Чувствителен и пищеварительный тракт, а повреждения неделящихся нервных клеток наблюдаются только при высоких уровнях облучения.

    Попадая в окружающую среду, радионуклиды рассеиваются и разбавляются, но они могут различными способами накапливаться в живых организмах при движении по пищевой цепи. Радиоактивные вещества могут также накапливаться в воде, почве, осадках или в воздухе, если скорость их поступления превышает скорость естественного радиоактивного распада.

    Загрязняющие вещества. Условия жизни человека и устойчивость природных биогеоценозов в течение последних десятилетий быстро ухудшаются вследствие загрязнения окружающей среды веществами, образующимися в результате его производственной деятельности. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.

    К первой группе относятся сернистый ангидрид (медеплавильное производство), диоксид углерода (тепловые электростанции), оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения (главным образом нитраты и фосфаты).

    Во вторую группу входят искусственные вещества, обладающие специальными свойствами, удовлетворяющими потребности человека: пестициды (от лат. pestis - зараза, разрушение и cido - убивать), используемые для борьбы с животными - вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды (от лат. insecta - насекомые и cido - убивать) - средства для борьбы с вредными насекомыми и гербициды (от лат. herba - трава, растение и cido - убивать) - средства для борьбы с сорняками.

    Все они обладают определенной токсичностью (ядовитостью) для человека. Одновременно они служат антропогенными абиотическими факторами среды, оказывающими значимое влияние на видовой состав биогеоценозов. Это влияние выражается в изменении свойств почвы (закисление, переход в растворимое состояние токсичных элементов, нарушение структуры, обеднение ее видового состава); изменении свойств воды (повышенная минерализация, повышение содержания нитратов и фосфатов, закисление, насыщение поверхностно-активными веществами); изменении соотношения элементов в почве и воде, что приводит к ухудшению условий развития растений и животных.

    Подобные изменения служат факторами отбора, в результате действия которых формируются новые растительные и животные сообщества с обедненным видовым составом.

    Изменения факторов среды по силе действия на организмы могут быть: 1) регулярно-периодическими, например в связи со временем суток, сезоном года или ритмом приливов и отливов в океане; 2) нерегулярными, например изменения погодных условий в разные годы, катастрофы (бури, ливни, обвалы и т.д.); 3) направленными: при похолодании или потеплении климата, зарастании водоемов и т.д. Популяции организмов, обитающие в какой-то определенной среде, приспосабливаются к этому непостоянству путем естественного отбора. У них вырабатываются те или иные морфологические и физиологические особенности, позволяющие существовать именно в этих и ни в каких других условиях среды. Для каждого влияющего на организм фактора существует благоприятная сила воздействия, называемая зоной оптимума экологического фактора или просто его оптимума. Для организмов данного вида отклонение от оптимальной интенсивности действия фактора (уменьшение или увеличение) угнетает жизнедеятельность. Границы, за пределами которых наступает гибель организма, называют верхним и нижним пределами выносливости (рис. 25.5).


    Рис. 25.5. Интенсивность действия факторов среды

    Опорные точки

    • Большинство видов организмов приспособлено к жизни в узком диапазоне температур; оптимальные значения температуры составляют от +15 до +30 °С.
    • Свет в форме солнечной радиации обеспечивает все процессы жизнедеятельности на Земле.
    • Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, образуют «фоновое» излучение, к которому ныне существующие растения и животные адаптированы.
    • Загрязняющие вещества, обладая токсическим действием на живые организмы, обедняют видовой состав биоценозов.

    Вопросы и задания для повторения

    • 1. Что такое абиотические факторы среды?
    • 2. Какие приспособления существуют у растений и животных к изменениям температуры окружающей среды?
    • 3. Укажите, какая часть спектра видимого излучения Солнца наиболее активно поглощается хлорофиллом зеленых растений?
    • 4. Расскажите о приспособлениях живых организмов к недостатку воды.
    • 5. Охарактеризуйте влияние различных видов ионизирующего излучения на животный и растительный организмы.
    • 6. Каково влияние загрязняющих веществ на состояние биогеоценозов?

    Важнейшие абиотические факторы и адаптация к ним живых организмов

      Дайте характеристику света как абиотического фактора. Приведите классификацию экологических классов растений по отношению к свету.

      Охарактеризуйте температуру как абиотический фактор. Объясните экологический смысл правил Бергмана и Аллена (приведите примеры).

      В чем состоит различие между пойкилотермными и гомойотермными организмами?

      Как формулируется биоклиматический закон А. Хопкинса? Дайте ему экологическое объяснение.

      Охарактеризуйте влажность как абиотический фактор. Приведите примеры влаго- и сухолюбивых растений и животных, а также предпочитающих умеренную влажность.

    Среди основных абиотических факторов рассмотрим свет , температуру и влажность .

    Свет.
    В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца" .

    Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

    Где А - донор электронов.

    У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

    У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

    В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

    Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света.

    Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

    Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

    По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

      Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.

      Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.

      Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

    Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

    В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

    Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

    Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

    Важным экологическим фактором является температура.

    Температура.
    Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
    Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
    регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

    В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

    К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

    В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

    Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

    У животных с постоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела (правило Аллена, 1877 г.).

    Правило Аллена наглядно проявляется, например, при сравнении размеров ушей экологически близких видов: песца - обитателя тундры; лисицы обыкновенной - типичной для умеренных широт; фенека - обитателя пустынь Африки.
    Реакция животных на тепловой режим проявляется и в изменениях пропорций отдельных органов и тела (у горностая из северных районов увеличено сердце, почки, печень и надпочечники по сравнению с такими же зверьками в местностях с более высокой температурой). Из правил Бергмана и Аллена бывают исключения.

    Фенек

    В зависимости от вида теплообмена различают два экологических типа животных: пойкилотермные и гомойотермные.

    Пойкилотермные организмы (от греч. poikilos - разнообразный) - животные с неустойчивым уровнем обмена веществ, непостоянной температурой тела и почти полным отсутствием механизмов теплорегуляции (холоднокровные). К ним относятся беспозвоночные, рыбы, пресмыкающиеся, земноводные, т. е. большинство животных, за исключением птиц и млекопитающих.

    Температура тела у них изменяется с изменением температуры окружающей среды.

    Гомойотермные организмы (от греч. homoios - одинаковый) - животные с более высоким и устойчивым уровнем обмена веществ, в процессе которого осуществляется терморегуляция и обеспечивается относительно постоянная температура тела (теплокровные). К ним относятся птицы и млекопитающие. Температура тела поддерживается на относительно постоянном уровне.

    В свою очередь, пойкилотермных животных можно разделить на эвритермных, ведущих активный образ жизни в сравнительно широком температурном диапазоне, и стенотермных, не переносящих значительных колебаний температур.

    Механизмы терморегуляции бывают химические и физические.

    Химический механизм обусловлен интенсивностью реакций в организме и осуществляется рефлекторным путем:

    Физический механизм терморегуляции обеспечивают теплоизолирующие покровы (мех, перья, жировой слой), деятельность потовых желез, испарение влаги при дыхании, сосудистая регуляция кровообращения.

    У пойкилотермных животных интенсивность обмена веществ прямо пропорциональна внешней температуре, у гомойотермных - наоборот, при ее понижении возрастают потери тепла и в ответ активизируются обменные процессы, повышается теплопродукция. Интенсивность метаболизма (обменных процессов) при гомойотермии обратно пропорциональна внешним температурам. Однако такая закономерность прослеживается лишь в определенных пределах. Повышение или понижение температуры относительно порогового значения вызывает перегрев или переохлаждение животного и в итоге его гибель.

    Промежуточное положение между пойкилотермными и гомойотермными занимают гетеротермные животные. У них в активном состоянии поддерживается относительно высокая и постоянная температура тела, а в неактивном - температура тела мало отличается от внешней. У этих животных во время спячки или глубокого сна уровень обмена веществ падает, и температура тела лишь незначительно превышает температуру среды. Типичными представителями гетеротермных животных являются суслики, ежи, летучие мыши, медведи, стрижи, утконосы, ехидны, кенгуру.

    Рассмотрим пример с насекомыми, представителями пойкилотермных животных (см. рисунок).

    Кривая П. И. Бахметьева

    При t° +10°C у насекомых наступает оцепенение, при t° 0°C - переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После резкого ее повышения начинаются процессы, ведущие к ухудшению физиологического состояния организма. Физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую приостановку всех жизненных процессов организма. Подобное состояние, получившее название анабиоз, наблюдается у вирусов, бактерий, беспозвоночных, земноводных, пресмыкающихся, лишайников, мхов. Явление анабиоза впервые было обнаружено и описано А. Левенгуком (1701 г.).

    Изучение анабиоза послужило толчком к развитию различных криотехнологий (от греч. kryos - холод, мороз), например, криоконсервации. Этот метод широко используется в биологии, медицине, сельском хозяйстве, в практике длительного хранения консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, различных тканей и органов для трансплантации (от лат. transplantatio - пересаживание), культур, бактерий, вирусов.

    Температурный фактор имеет важное значение в распределении живых организмов на Земле и тем самым обусловливает заселенность ими разных природных зон. В 1918 г. А. Хопкинс сформ улировал биоклиматический закон. Он установил, что существует закономерная, тесная связь развития фенологических (сезонных) явлений с широтой, долготой и высотой местности над уровнем моря.
    Он подсчитал, что
    по мере продвижения на север, восток и в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на 4 дня на каждый градус широты, 5 градусов долготы и примерно на 100 м высоты.

    Одной из важных закономерностей в распределении современных организмов служит их биполярность - географическое распределение наземной и морской флоры и фауны, при котором один и тот же вид обитает в холодных и умеренных широтах обоих полушарий, но отсутствует в тропическом поясе (беззубые киты, ушастые тюлени и др.).

    Не менее важным фактором окружающей среды является влажность.

    Влажность.
    Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. Все живое Земли включает воду, например, медузы содержат 95-99% воды, кукуруза 70%, зерновые злаки 87%. Даже в амбарном долгоносике, питающемся сухим зерном, содержится 46% воды. В эмбрионе человека 97% воды, после его рождения - 64-77%. У мужчин в возрасте от 18 до 50 лет в организме содержится ~ 61% воды, у женщин 54%.

    За свою жизнь человек выпивает до 50-77 м3 воды (за сутки ~ 2,5-3 л). В целом за сутки человек теряет 2-2,5 л воды: 800-

    1300 мл с мочой, около 200 мл - с испражнениями и 600 мл с поверхности тела и при дыхании. С потерей 1-1,5 л воды у человека появляется жажда, при расходовании 6-8% влаги от веса тела он впадает в полуобморочное состояние, при дефиците 10-12% наступает смерть.

    В различные периоды развития потребность растений в воде неодинакова, особенно у разных видов; меняется она и в зависимости от климата и типа почвы. Например, злакам в период прорастания семян и их созревания нужно меньше влаги, чем во время их интенсивного роста. Для каждой фазы роста и стадии развития любого вида растений можно выделить критический период, когда недостаток воды особенно отрицательно сказывается на его жизнедеятельности. Влажность среды часто является фактором, лимитирующим численность и распространение организмов по земному шару. Например, бук может жить на сравнительно сухой почве, но ему необходима достаточно высокая влажность воздуха. У животных весьма важную роль играют проницаемость покровов и механизмы, регулирующие водный обмен.

    Различают абсолютную влажность воздуха, представляющую собой количество газообразной воды (пара) в граммах в 1 м3 воздуха, и относительную. Относительная влажность характеризует степень насыщения воздуха парами воды при определенной температуре и выражается в процентах как отношение абсолютной влажности к максимальной влажности (массе водяных паров в граммах, способных создать полное насыщение в 1 м3 воздуха)

    где: r - относительная влажность, %;
    m - масса пара, фактически содержащегося в 1 м3 воздуха (абсолютная влажность), г;
    mнас - масса 1 м3 насыщенного пара при данной температуре, г.

    Важное значение для организмов имеет дефицит насыщения воздуха водяными парами, т. е. разность между максимальной и абсолютной влажностью при данной температуре:

    d = mнас - m.

    При разных температурах дефицит насыщения воздуха водяными парами неодинаков при одной и той же влажности. Чем выше температура, тем воздух суше, и тем интенсивнее в нем происходит транспирация (испарение воды листьями и другими частями растений).

    Сезонное распределение влаги в течение года, а также ее суточное колебание тоже исключительно важно для жизнедеятельности организмов.

    По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность . Среди растений различают:

    Среди наземных животных различают:

      Гидрофилы - влаголюбивые животные (мокрицы, ногохвостки, комары, наземные планарии, наземные моллюски и амфибии).

      Мезофилы - обитают в районах с умеренной влажностью (озимая совка, многие насекомые, птицы, млекопитающие).

      Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные грызуны и пресмыкающиеся).

    Например, слоновая черепаха запасает воду в мочевом пузыре, некоторые млекопитающие избегают дефицита влаги путем отложения жиров, при окислении которых образуется метаболическая вода. За счет метаболической воды живут многие насекомые, верблюды, курдючные овцы, жирнохвостые тушканчики и др.